I did some more experimentation with open-interpreter today. The first use case I tried was to create, organize and reorganize files. It didn’t generate interesting content, but it was fluent at writing Python code to organize and rename files. When I prompted it to generate a fake dataset, it installed faker and created a CSV with the columns I requested. When I requested it plot those data points, it installed matplotlib and did so without issue.

It’s much easier to test Temporal Workflow in Python by invoking the contents of the individual Activities first, in the shell or via a separate script, then composing them into a Workflow. I need to see if there’s a better way to surface exceptions and failures through Temporal directly to make the feedback loop faster.


From this paper:

62% of the generated code contains API misuses, which would cause unexpected consequences if the code is introduced into real-world software

Language models and prompts are magic in a world of deterministic software. As prompts change and use cases evolve, it can be difficult to continue to have confidence in the output of a model. Building a library of example inputs for your model+prompt combination with annotated outputs is critical to evolving the prompt in a controlled way, ensuring performance and outcomes don’t drift or regress as you try and improve your overall performance.

I’ve been doing a bit of work with Temporal using it’s Python SDK. Temporal remains one of my favorite pieces of technology to work with. The team is very thoughtful with their API design and it provides a clean abstraction for building distributed, resilient workflows. It’s a piece of technology that is difficult to understand until you build with it, and once you do, you find applications for it everywhere you look. I highly recommend experimenting with it if you’re unfamiliar.

2023-08-07

🎧 Velocity over everything: How Ramp became the fastest-growing SaaS startup of all time | Geoff Charles (VP of Product)

This conversation between Lenny and Geoff was particularly noteworthy for me because it hit on so many areas of what I’ve seen in the most effective organizations and teams I’ve been apart of as well as realigning incentives to solve a number of problems I’ve experienced that hold teams back.

We report back operational overhead, meaning the percentage of tickets that come from your product area normalized by the number of users that are using that product

It will be interested to see if or when we hit scaling limits to training more powerful models and what our new bottleneck becomes. For now, there appears to be a lot of greenfield.

While not an entirely unique perspective, I believe Apple is one of the best positioned companies to take advantage of the recent improvements in language models. I expect more generic chatbots will continue to become commodities whereas Apple will build a bespoke, multi-modal assistant with access to all your personal data on device. This assistant will be able to do anything the phone can do (invoke functions/tools) as well as answer any question about your personal data (show me photos from Christmas in 2018). Let’s hope they name it something other than Siri.